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* I SUMMARY

-We proposEt-that Markov random field models (MRFs) be used as 2L4
a framework within wjhich to construct models of synthetic aperture
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radar (SAR) images. We-*isr-f-y the relationship between this class

of models and the Boltzmann machine (BM) of artificial intelligence.

--W~ then generalize-,the BM training procedure and use it to train

MRF models. Using this technique-We investigate the ability of a

simple MRF texture model to learn a texture by maximising a
Ds A, ..

relative entropy objective function . -IWe---E41d- that the marriage of *

MRF models with the BM training procedure is fruitful. -i
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1. INTRODUCTION

The purpose of this memo is to advocate the use of Markov random field
(MRF) models in the analysis of SAR imagery. In addition we wish to promote
the idea of generating suitable MRF models by a "training" procedure. We ' "pp

select a training procedure which has been used in the past to train Boltzmann
machines (hence the title of the memo).

The organisation of the memo is such that all mathematical details are
relegated to appendices in the order in which they are encountered in the body
of the memo. It is an indication of the mathematical flavour of this new field
that the appendices constitute a large part of this memo. However we hope that
the discussion (in the form of words and pictures rather than equations) will
capture the interest of the non-mathematical reader nonetheless.

In section 2 we outline the problems which we are faced with in modelling
SAR imagery, and we propose that a general model-building framework (MRFs)
be used instead of the plethora of existing models. In section 3 we give an
overview and an interpretation of MRFs. In section 4 we give a brief description .
of Boltzmann machines (BMs) in order to make clear the connection with MRFs (a
BM is a special case of a MRF). In section 5 we generalise the idea of a BM
by taking advantage of their connection with MRFs. This enables us to design
(in principle) special purpose BMs which can incorporate prior knowledge of
the type of model that needs to be built. In section 6 we give some numerical
simulations of a particular class of special purpose BM in order to demonstrate
their ability to learn a "texture".

2. MODELS OF SAR IMAGES

A SAR image consists of a set of complex numbers (I and Q) which forms a
member of the ensemble of all possible SAR images of the scene under surveillance.
If one has no prior knowledge of the content of the scene, then one can not predict
which member of the ensemble of possible SAR images will occur. Such uncertainties
can be expressed in terms of a statistical and/or structural model of the scene.
The most obvious of these uncertainties is the randomness of the phase of the
radiation which is scattered from each elementary scatterer; this leads to the
notorious speckle which degrades all coherent images. Other uncertainties derive
from our ignorance of the underlying cross section of the elementary scatterers,
and our ignorance about how they are clustered together to form the scene.

A primary task in SAR image processing is to formulate a model which can
encode our prior knowledge about SAR scenes. In the Sensor Information Processing
Section (SIPS) of BSI there is a program of basic research which is achieving
significant success in describing some aspects of SAR images. We can partition
a SAR image into two components which we describe as "clutter" and "targets". -'
The "clutter" cross section can be modelled as a birth-death-migration process,
which leads to a cross section described by correlated gamma statistics. When
illuminated with coherent radiation such a cross section gives rise to K
distributed scattered radiation (Oliver, 1985). The "target" cross section can
be modelled as a localised strongly scattering region. This allows targets to
be super-resolved (Luttrell and Oliver, 1984; Luttrell and Oliver,

1984/5; Luttrell, 1985).
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The above two models are the simplest that give non-trivial results.
Thus "clutter" can (and does) have a more complicated structure than that .- ,.,

implied by a correlated gamma distribution model, and "targets" can (and -
do) have an internal structure which is not described by the target model
used above. We could adopt one of two distinct approaches in order to
develop the research program further, either -..c-

i. Develop detailed specific models for each type of clutter and target,
or %~

ii. Develop a general framework (or methodology) within which clutter and/ NM
or target models could be built (semi)automatically.

Hitherto (i) has been used as the investigative tool of SAR research, -"""

and it has enjoyed a lot ot success. However the great variety of cluttei/
target scenarios encountered in SAR imagery suggests that (ii) might ultimately
be a more profitable line of investigation.

We propose that the novel approach in (ii) above) be adopted in order to

begin to model the less well understood aspects of SAR scenes. We require
a very general model-building framework in order that we donot unnecessarily
constrain the resultant models. We therefore propose that Markov random
field models be used as the basic framework for SAR image models; these are
described in the next section.

3. MARKOV RANDOM FIELD MODELS

The conventional notion of a "Markov chain" is one of a system evolving
" from state to state under the influence of a stochastic matrix. We could,
" in principle, use a Markov chain to generate a SAR image by building the image

up in a natural sequence. This would involve starting with a structureless
. image, and by using an exceedingly complicated stochastic matrix we could

generate a Markov chain of images with increasing complexity (ie structure)."-"-"-
If the stochastic matrix faithfully represents the processes that occur in nature
(eg trees growing, humans enclosing land with hedges, humans building roads and
towns, etc), then the images in the Markov chain should begin to resemble
realistic SAR images. In a sense we would obtain SAR images by a process which
is akin to "evolution". If we know what the relevant SAR image generating
stochastic matrix was, we could (in principle) calculate the properties of
SAR images. However, we do not begin to pretend that we know how to construct
such a stochastic matrix, and so we shall have to model directly the

properties of SAR Images without recourse to an "evolutionary" model.

The simplest suitable Markov model for SAR images will have two spatial
dimensions and no time dimension. The construction of two spatial dimensional
Markov models has been explained very clearly in the literature (Geman and
Geman, 1984); they are a special case of "Markov random field" (MRF) models.

The origin of the term MRF is as follows: "random field" is used because the
image pixels can take values which are best described by probabilistic constraints;
"Markov" is used because the permitted probabilistic constraints have a
limited (spatial) range.

The field variables take values which are derived using a probability
density function (PDF) which is conditioned by the values of the field
variables in some defined "neighbourhood". Thus an MRF is defined by a complete
set of neighbourhood interactions. The diagram in Figure I conveys th- idea
of an MRF pictorially. The class of models which can be so constructed is very

-2-



large, it includes; "Ising type" models, texture models, neural models (in
artificial intelligence), etc. The neighbourhood interactions may be written
in the form of a "potential", which determines a Gibbs distribution. This is
not a trivial result - it follows from the equivalence between Gibbs distribution 'S

and MRFs. A more detailed description of MRFs is to be found in Appendix 1.

The simplest way in which we can implement an MRF model for describing SAR
data is to regard the pixel values of a SAR Image as field variables whose values
are mutually correlated. The observed correlations are obtained from the under-
lying neighbourhood interactions of an MRF model. However, the problem of -
deducing what underlying interactions are needed in order to generate a set of
observed correlations is very subtle indeed; this is an example of the so-called
"inverse problem".

Composite MRF models have been explored with some success for synthetic

data sets (Geman and Geman, 1984). A composite MRF model is constructed by
introducing an additional set of "hidden" field variables in order to augment
the usual set of "visible" field variables; see Figure 2 for a pictorial

representation. The pixel values are identified with the visible field variables,
and boundary information (in Geman and Geman's model, for instance) is identified
with the hidden field variables. This is a very natural procedure because the
positions of boundaries certainly influence the pixel values of the data, but
such influence is indirect. Thus the boundary information is regarded as "causal
factors" which influence the form taken by the observed image. This approach
expresses the nature of the mutual correlations amongst the pixel values in a
far more satisfactory manner than any model which does not introduce the notion
of boundaries. More generally we observe that any hidden variable which has an
(indirect) influence on the correlations amongst the pixel values must be
included if an economical model is to be constructed. For the purpose of SAR rum
image analysis we would like to identify the primitive casual factors which
give rise to the observed SAR image. The specification of these alone would *-.

then suffice to describe the image, and an extensive data compression would
have been achieved.

We shall now prepare the ground for constructing a composite MRF model to
describe the processes which give rise to SAR image data. However we are not
in the privileged position of knowing every detail of the MRF interactions
which can explain the correlations present in SAR data. Therefore we must
extend the composite model to include hidden field variables/interactions whose
exact structure has yet to be decided. Such additional structure could then be
determined by "training" the MRF model on some SAR data. This type of approach
would at best be a form of inspired model building in which one rapidly
determined the hidden variable structure of the MRF, and at worst it would be
a phenomenological MRF model in which a set of "unphysical" hidden variables/
interactions conspired to emulate the required correlation structure of the
pixel values. A derivation of a suitable objective function (called "relative • "
entropy") which should be maximised in order to train an MRF is contained in __

Appendix 2. We are currently investigating other objective functions which are
more specific about what should be learnt during training.

4. THE BOLTZMANN MACHINE

An extreme case of the uncommitted MRF type of model arises if we have no

prior knowledge of the MRF structure and interactions whatsoever - everything
must be acquired by the training procedure. Such an MRF would be a ver i flexible
means for emulating arbitrary MRFs. This is the methodology adopted by many in
the "connectionist" approach to modelling of the (human) brain. Specifically
a "Boltzmann machine" (BM) has been proposed (Hinton et al, 1984), which
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has the structure of qn Ising spin model MRF. We shall call the spins "units"
(after Hinton et al) in the following discussion. A summary of BM operation,
and a review of current literature on the subject has been given by Bounds *.). .
(1985).

The units of a BM have imposed on them a prior neighbourhood structure, but
the specific interaction strengths are not determined a priori. The prior
neighbourhood structure is chosen at random when one is completely ignorant of
the required MRF structure, and the neighbourhood interactions are permitted
to take the form of a quadratic potential only (for simplicity). The diagram
in Figure 3 shows such a BM structure. The BM thus has a non-committal
neighbourhood structure, and a simple form of neighbourhood interaction; little -.- '.-,-
(or no) prior knowledge has been encoded into the machine. The flexibility of
a BM is greatly enhanced by deeming that only a few of its units are "visible";
the remainder are deemed to be "hidden". The hidden units then indirectly
influence the behaviour of the visible units. This is completely analogous to
the hidden boundary information influencing the visible pixel values in the
composite MRF model of the previous section. However the hidden units of a
BM do not in general have a physical interpretation, although Hinton et al
refer to them as "elemental hypotheses".

An advantage of the BM structure is that because the behaviour of the
hidden units is not directly observed, their neighbourhood interactions can
be adjusted in whatever way is required for them to induce a desirable high
order correlation amongst the visible units. Therefore a training procedure
must regard the visible units as "supervised" and the hidden units as "unsuper-
vised". A derivation of the gradients of the relative entropy objective
function (used for training) with respect to the various neighbourhood interaction
strengths is given in Appendix 3. The derivation which we present is more
general than it needs to be for a BM, because the results are also used later
on when more complicated machine structures are considered. Hinton et al (1984)
minimise MINUS the relative entropy to train their BM - this is equivalent to
our procedure.

The fidelity with which a BM can represent the correlation structure required

of its visible units depends on the number of hidden units, and on the size of
the neighbourhoods which are introduced. Increasing the size of either (or both)
of these quantities will enhance the BM's capabilities. However the non-committal
nature of the BM structure means that it can be an exceedingly inefficient means
of generating some types of correlations. For instance there could be
correlations present which are very simply expressed in terms of a few complicated
MRF interactions, but which have a very complicated expression in terms of the
simple BM interactions. In the next section we describe a way of "custom
designing" parts of the BM to deal with known correlations (prior knowledge).

5. THE GIBBS MACHINE AND THE HYBRID GIBBS MACHINE -- - -- .... . -,

A limitation of the (canonical) BM is that one can not incorporate prior
knowledge of the required correlations into the machine's structure. The number
of hidden units which is required to emulate a given correlation structure is
much greater (in general) than if such correlations had been built in at the
outset. Of course the raison d'etre of the BM is that it has a (fairly) non-
committal internal structure, but this should not discourage us from attempting
to optimise its performance in particular cases.

In the extreme cases where we know all of the relevant variables (visible
and hidden) and their interactions we may write down the full MRF model - no
training is required. Alternatively we may know the variables and their
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neighbourhood structure - training is the required to determine the interaction
strengths. The gradients of the objective function used during training are
given by the same expression as was used for the canonical Boltzmann machine -
(see Appendix 3). Whether or not such a machine needs to be trained, it clearly
has a more general internal structure than the Boltzmann machine described by - \\

Hinton et al (1984). Following the terminology which is used in statistical
thermodynamics we suggest that the term "Gibbs machine" (GM) may be used to
describe a machine which has an arbitrary internal structure. This terminology
is also consistent with that of "Gibbs distributions" as described in Appendix
1. An example of a Gibbs machine is shown in Figure 4.

In the more usual case we know only some of the relevant variables and
their interactions, which enables us to write down only an incomplete MRF model.
The presence of additional (but unknown) variables/interactions makes it
necessary to incorporate some (non-committal) BM into the associated GM in order
that the values taken by the visible units can have the correct correlation
properties. This is discussed in more detail in Appendix 4. The resulting
machine is still a Gibbs machine, but it now consists of two parts:

i. A custom designed part which incorporates prior knowledge, and

ii. A non-committal part which gives the machine the ability to be taught
correlations which were not anticipated in the prior knowledge.

An example of such a machine is shown in Figure 5. We shall call (ii)
a "graft", because it serves to extent the capabilities of the machine beyond that
which prior knowledge alone permits. Clearly if the graft proves to be unnecessary,
then the interactions between it and (i) will be severed during training; this
will happen if all the correlation structure of the visible units has been
anticipated by the prior knowledge encoded in i). Conversely the graft will
interact strongly with i) if the prior knowledge is insufficient to specify the
correlation structure. We propose to use the term "hybrid Gibbs machine" or
"hybrid" to describe a machine which has the heterogeneous structure given by
i) plus (ii).

%.- .. _

The hybrid has a structure between that of the full MRF model (where we
know all the variables/interactions in advance), and that of the BM model (where
we know nothing in advance). The graft helps to capture whatever structure
there is present IN ADDITION TO that specified by the prior knowledge. Ideally
when training is complete we would like to interpret the interactions present
within (ii) (and the interactions between (i) and (ii)) in order to increase
our understanding (prior knowledge) of the correlation structure. This is
equivalent to determining what elementary hypothesis corresponds to each unit's
state, which is not a simple task in general. This difficulty arises because
it is the cooperative behaviour of the units which captures correlation
structure; a unit can not operate alone in a meaningful fashion. Thus elementary
hypotheses (if indeed they exist) are spread out over many units of the machine.
We have not resolved this problem at present, but we are devoting considerable
research into elucidating what is learnt by a hybrid Gibbs machine during
training; the results will be reported elswhere.

An interesting possibility which arises in the context of hybrid Gibbs.'' "
machines is that of progressively growing a graft. At the outset we envisage
a rudimentary machine which does not capture the correlation structure which is
required of it very well (even after training). We could then "grow" the
machine in a selective fashion by adding on suitably fashioned and placed pieces
of graft. The form and position of such grafts would be suggested by the same
training procedure which is normally used. However in this case we are positively
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encouraging the birth of MRF interactions which DO NOT EXIST YET. This
possibility is the most compelling MRF building strategy which we have found
to date, and it is currently receiving much attention. Again the results
will be reported elsewhere.

A possible criticism of the learning capabilities of a BM is that it can
take an exceedingly long time to acquire a useful set of internal connection " ."*

strengths by observing training set data. However we observe that this
objective is damning only for completely non-committal (canonical) Boltzmann
machines, because they have no prior knowledge of what they need to represent
and so they need to acquire EVERYTHING from the training set. Our scheme
introduces prior knowledge in an effort ot circumvent this (and other) problems
by presenting the machine with a partial representation before it has observed

the training set.

6. NUMERICAL SIMULATIONS

This work is in its infancy, so our numerical results are a preliminary
demonstration of what can be achieved by incorporating prior knowledge into a

* Boltzmann machine. In order to show the relevance of the technique to SAR image
processing we shall define a standard training set of signals. Such a set must
possess the basic textural properties that SAR data possess, for instance a
correlation length. For simplicity we shall define a class of 2D signals which
is a generalisation of the ID random telegraph signal (RTS); this is dealt
with in detail in Appendix 5. The MRF structure of an RTS is shown in Figure 6.
Some examples of isotropic homogeneous 2D RTSs are shown in Figure 7, and some
examples of mirror-symmetric homogeneous 2D RTSs are shown in Figure 8(a), 8(b) ,,'

and 8(c). In all cases we have noted the corresponding value(s) taken by the
RTS probability parameters below the diagram. The diagrams shown in each part- -

of Figure 8 have a sequence which follows a straight line in the corresponding
four dimensional parameter space. We have generated all these 2D textures from
Gibbs distributions by using the Metropolis algorithm. This is achieved in a
fashion which is closely related to the work of Cross and Jain (1983). Our
ability to generate training sets of signals by using the Metropolis algorithm
allows us to simplify the training procedure which is derived in Appendix 3;
this is explained in Appendix 6.

We shall confine our attention to the pure Gibbs machine (GM). By definition
this has an MRF structure which is identical to that which generates the RTS
training set. For an RTS defined on a square lattice with an 8-fold neighbourhood

(see Appendix 5 and Figure 6) this implies that the Gibbs machine has a square
lattice with an 8-fold neighbourhood. The RTS is not defined in such a way as
to involve hidden variables, so the Gibbs machine will not have hidden variables; ' .
it is not a composite MRF. For an isotropic homogeneous RTS there is a single
parameter p to be learnt during training, and for the more general mirror-
symmetric homogeneous RTS there are four parameters p1 to p4 to be learnt (see
Appendix 5). Training a MRF which has an identical structure to that which
generates the training set is a fair test of the performance of the relative
entropy objective function, ie it is a test which has been divorced from problems .'-.

which arise due to an inappropriate choice of MRF structure to be trained.• ., p

-' - .
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Results for the isotropic homogeneous RTS are shown in table 1. 
A 10"

by 10 (toroidal) lattice was chosen for both the RTS and the GM. The
potentials were parameterised as in equation (A5.5), and the RTS probability
parameter pRTS and GM probability parameter p were chosen separately. The J,
gradient in equation (A6.3) could then be calculated by SEPARATELY estimating
the average of the potential for the GM (the first term) and for the RTS (thesecond term). The second term does not involve the GM because there are no

hidden units. The estimates of the average of the potential were obtained
(in both cases) by driving the MRF into equilibrium using the Metropolis
algorithm, and then averaging over all 400 pairs of 4istinct neighbouring nodes
on the 100 node (toroidal) lattice. Equilibrium was assumed to have been
attained after 10 full raster scans of the Metropolis algorithm, and the
average was then built up over 10 successive full raster scans. The number
of scans is insufficient to generate a fair set of realisations from the RTS
when long range (anti)correlations are present (eg p = 0.35 or p = 0.65 in
Figure 7), but this does not affect the corresponding average much. This is
because the "missing" realisations have the same statistical properties as those
which are generated. The estimates of the gradients of F so obtained were
converted into gradients with respect to the probability parameter p, and the
results are shown in table 1. The tabulated G is effectively the contribution
of each nearest neighbour pair of nodes to the total G. Clearly G is very
good at distinguishing between the various members of the isotropic
homogeneous class of RTSs.

Similar results for the non-isotropic homogeneous RTS (still using a pure
GM) would require us to give the partial derivatives of G with respect to four
probability parameters. We cannot g;ve results as comprehensive cs thos' in
Table 1, so we shall restrict ourselves to partial derivatives whi.ch ar. related
to the textures shown in Figure 8 only. In each case a 32 by 32 t,-oidal)
lattice was used for both the RTS and the GM. 10 full raster scans of the
Metropolis algorithm were used to drive the RTS and the GM into equilibrium, -.

and the averages of each of the four potentials were built up over 10 successive -.
full raster scans by adding up all 1024 (= 32 x 32) occurrences of each no "ntial
on the lattice. The estimates of gradients of G were then converted into grad(G)
measured in . space. The results are presented in Tables 2(a), 2(b) and 2 (c) ;j
which correspond to Figures 8(a), 8(b) and 8(c) respectively. We can see that
grad(G) "points" in the roughly the correct direction in space, so that if
F were used as an objective function for training the GM to imitate the RTS then

learning would be rapid. This is borne out by running a "steepest ascent"
algorithm to locate the maximum of G.

A particular point of interest in Table 2 is the increase in gradient as
logarithm of the probability that the GM will produce textures belonging to the

kTS class chosen (see Appendix 1), so the behaviour of the gradient implies
that this probability decays faster than exponentially as the GM and RTS become
mismatched. A glance at each of Figures 8(a), 8(b) and 8(c) reveals that this
is reasonable, because the various textures which we are comparing have very
little "overlap" even when they are "adjacent" in p space. Therefore the overlap
between textures must decrease extremely rapidly with separation in p space. We
may estimate this decrease in probability by crudely integrating the results
given in Table 2. For example (see Table 2(a)) the probability that £ =

produces a texture which looks like that produces by . = is crudely estimated .Was P-.A.

P exp[ - 0.1 x (0.2+0.6+1.0+1.6) - 0.1 x (0.3+0.6+1.0+1.6)

- 0.1 x (0.5+1.1+1.4+1.7) - 0.1 x (0.2+0.2+0.6+0.2)]

0.25



This is the probability per lattice site pair per realisation of the texture
(see Appendix 1 for more details).

In order to relate our results to synthetic aperture radar (SAR)
applications, we must incorporate speckle into the textures. In the simple
binary RTS texture model we must regard the RTS as "hidden", and instead
a speckled RTS is "visible". This is a composite MRF model in which the
textural organisation is performed at a deeper level than the observed
quantities. Speckle itself is effectively a multiplicative noise process, ".
which may be modelled using a transition probability between 1 and 0 (and
vice versa) which occurs when viewing the (binary) RTS. Thus the 8-fold
neighbourhood lattice which holds the RTS is coupled (unidirectionally)
to 0-fold neighbourhood lattice which holds the observed speckled RTS. This

" structure is depicted in Figure 9. We shall use a unidirectional transition
probability Pspeckle to control the "depth" of the speckle (relative to the

separation of the binary RTS levels). Thus Pspeckle = 0 will correspond
to having no sp.ckle present, and will produce the same results as in Figures
7 and 8 and Tables 1 and 2. In what fllows we shall set Pspeckle = 0.1,
which degrades the textures to a significant extent.

Figures 10(a), 10(b) and 10(c) show speckled textures corresponding to
those in Figures 8(a), 8(b) and 8(c) respectively. Note that the random
numbers used in the Metropolis algorithm leading to Figure 8 are different from
those leading to Figure 10, and so the underlying RTS has different values in
each case. The effect of speckle is seen to degrade the textures in such a way
that it becomes much more difficult to distinguish between them; this is a common
problem in SAR image analysis. We shall investigate the learning ability of 1
a GM which has an identical lattice structure to the RTS (and speckle). For

this purpose we shall use the relative entropy measure again, and we shall
assume that the GM already knows the value Of Pspeckle so that the p must be
learnt as before. The results are presented in Tables 3(a), 3(b) a7d 3(c)
which correspnd to Figures 10(a), 10(b) and 10(c) respectively. The results *..

in Table 3 should be compared with those in Table 2 (which were derived in the _

specKle-free case). As before the gradient points in roughly the correct
direction in p space, and so G would be a good objective function to use during

-. training. However the estimated gradients are much smaller than they were in
the speckle-free case. This is obviously because the OBSERVED overlap between
textures is greater when speckle is included, so texture discrimination is
more difficult than before. The probability that p = -E produces a texture which 5W
looks like that produced by p = p is crudely estimated as

P exp[ - 0.1 x (0.1+0.3+0.3+0.2) - 0.1 x (0.1+0.3+0.3+0.2)

- 0.1 x (0.3+0.5+0.3+0.1) - 0.1 x (-0. 1+0. 1+0.4+0.4)]

0.68

Again this probability is per lattice site per texture realisation. This result
is 2 to 3 times larger than the equivalent speckle-free result, so the texture
overlage is correspondingly greater. If we were to increase Ps eckle then the '...-\

overlap would be even greater, and the ability to discriminate between the -

textures would be reduced further.

In order that the GM learns steadily we must estimate the gradient of G in
*'.' such a way that it is not dominated by statistical errors in the estimation ..

procedure. Clearly this becomes more critical as the texture overlap increases .-.-.

!! :::: :::-8-
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and the (ideal) gradients become smaller. Any procedure for discriminating
between textures will suffer from this problem, but the grad(G) has the
advantage of having a rigorous information theoretic justification (see
Appendix 1).

7. CONCLUSIONS

We have seen how the relative entropy measure G may be used as an
objective function to train a Gibbs machine to emulate (or capture) a - - - -.

texture. Furthermore we have seen that this measure is robust with respect
to presence of speckle noise; its performance gracefully degrades as the
effect of speckle becomes worse. We have not explored in detail the other
possible ways of using G (eg Boltzmann machine, hybrid Gibbs machine, etc).
Bounds (1985) has examined G in the context of Boltzmann machines, and work
in progress (Luttrell) is directed towards understanding how to use G and
other objective functions in the (necessarily more difficult) context of
hybrid Gibbs machines.

We propose that an MRF structure is ideal for modelling SAR images, and
that G is a very good measure to use for training the model. Whilst the
results presented in the last section are concerned solely with the very simple
2D RTS textures, we anticipate that there are no major problems in extending
the results to more general signal classes. In the language of the 2D RTS this
amounts to increasing the dimensionality of p space, and so introducing more
types of potential into the MRF model. The precise mix of pure Gibbs machine
and pure Boltzmann machine which we should use must depend on the signal class
and what we know about it (prior knowledge). A problem which can (and does)
arise in more complicated problems is the possibility that the training process
might run into a local (but not global) maximum of G. This and other problems
might be dealt with by "annealing" the MRF representation (Hinton et al, 1984).

When we have obtained MRF representations of the various texture classes
which occur in SAR imagery, we may perform many useful tasks:

i. We can generate synthetic textures corresponding to any of the training
classes. This is achieved by "running" the relevant MRF by using the
Metropolis algorithm.

ii. We can classify SAR textures by comparing them against the MRF representations
already learnt. This is achieved by identifying which MRF has grad(G) closest to
zero (for instance).

iii. We can define a texture specific target detection threshold. This is
achieved by using a trained MRF to define our best approximation to the corre-
sponding texture PDF. This enables us to define a suitable threshold.

iv. We can investigate how to refine our understanding of each texture by
examining the trained MRFs. This is speculative because it is not clear in
general how to perform such an interpretation of an MRF structure; this is the
subject of future work.

Together these properties constitute a powerful argument in favour of
using MRF models and the relative entropy objective function in the context of
SAR image analysis.
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APPENDIX I - Markov Random Fields (MRFs), The Metropolis Algorithm and Gibbs
Distribution - MRF Equivalence ow l '

The core concept in the development of Boltzmann machines is that of
Markov random fields (MRFs). Historically the Boltzmann machine has not been
developed using the languape of MRFs (Hinton et al, 1984). However we find that
the very general nature of MRFs makes it easier to understand the essence of
what a Boltzmann machine is. Furthermore it makes it obvious how to extend
the structure to more general types of machines.

The following discussion should be read in conjunction with Figure 1. A
MRF is built on a mathematical object called a "graph". Loosely speaking a
graph is a collection of "nodes", and a specification of what the "neighbourhood" -. - --

of each node is. The neighbourhood of a particular node is those nodes which
are deemed to be directly linked to a particular node. Thus a graph can be
visualised as a mesh-like construct with a line passing between each pair of nodes
which are neighbours. Some familiar graph-like structures are: a spider's web, .-
the London underground, a street map, etc. Some graphs (eg street maps) have
some asymmetric links (eg one way streets).

A MRF can be defined on a graph by associating a (possibly vector valued)
variable with each node. The value of each such variable is influenced ONLY
by the values of the variables at nodes in the (graph) neighbourhood. Such
influence between the variables is encoded in the form of neighbourhood -...
conditional PDFs (NCPDFs). Thus the joint values of the variables in the neigh-
bourhood of a particular node is used to define a PDF. This PDF in turn
defines the probability that the variable at the node of interest can take each

possible value which is accessible to it. A complete set of consistent NCPDFs
defines the properties of a particular MRF. Mathematically this can be
summarised as follows. A NCPDF has the form P( Xk I xjJ c Nk) where Xk is the
value taken by the variable at node k, and Nk is the set of nodes which are
neighbours of node k. The joint PDF will be denoted by P(X).

In general it is not possible to solve for P(X) given the set of NCPDFs
(although in special cases it is possible, eg gaussian NCPDFs); we have to
resort to numerical simulation. The Metropolis algorithm is universally used
for generating P(X) from the set of NCPDFs. The algorithm is astoundingly
simple for the complicated task it has to perform! Put most simply the
algorithm simultaneously updates each Xk according to its associated NCPDF.
Thus the updated values each have a probability distribution which is
determined solely by the previous values of the variables in the neighbourhood.
Such parallel operation of the Metropolis algorithm is not essential. Nodes
can be selected seqentially (raster fashion, at random, etc) and their
associated variables updated sequentially. The sequence of joint states X
which is generated by such a probabilistic algorithm converges to a limit
distribution in which each X is selected with the correct probability as
given by P(X); P(X) has been generated from the set of NCPDFs. Apart from some
subtle points of convergence the computational problem of passing from a set of
NCPDFs to the associated P(X) is solved by the Metropolis algorithm as p.-es.!nted
above.
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The formulation of a model as a MRF specified by a set of NCPDFs may
not be convenient in practice. For instance one may wish to derive P(X)
from some other quantity. This possibility can be released by invoking the
equivalence between MRFs and Gibbs distributions (Kindermann and Snell, .:'.;

1980). The essence of this equivalence is summarised as follows. A PDF

is a Gibbs distribution with respect to a graph if"A

PC=) exp( -U(X) ) (Al.1)

where

U(X) ~ V W) (Al.2) 7

c

The Vc(X) must have the property that they each depend on XA which are members -
of a single "clique" of the graph. A clique is a set of no es which are all. .
mutual (graph) neighbours. The Z in equation (A1.) is a normalisation factor
(partition function). The statement of the MRF-Gibbs distribution equivalence
is then

If P(X) is a Gibbs distribution with respect to a graph

then X is a MRF with respect to the same graph.

We can now specify the properties of P(X) by specifying a graph structure
and a set of Vc(X). Equations (A1.1) and (A.2) are used to build the P(X)

from the Vc(X). Such a prescription allows us to write down P(X) explicitly

in terms of a set of elementary "interactions" Vc(X). Such an explicit
P(X) is deceptively simple in form; the joint statistics of the Xk can not be
deduced from the form of the Vc(X) by elementary calculations. We have to recover
the NCPDF structure from P(X) and then REBUILD P(X) by using the Metropolis
algorithm if we wish to obtain explicit results. The NCPDFs are easily obtained
from P(X), with the MRF-Gibbs distribution equivalence ensuring that the
neighbourhoods which are obtained are the same as those of the graph which was
used to define P(X) in the first place. In essence there are two alternative
formulations of the problem:

i. Specify the NCPDFs directly, or

ii. Specify the Vc(X), and hence the P(X), and hence the NCPDFs.

Both of these are then numerically simulated using the Metropolis
algorithm. Formulation i) is useful if the probablistic interactions amongst
the variables (on the graph) are directly known. Formulation (ii) has a more
physical flavour where a set of "potentials" is used to specify the interactions

amongst the variables.

APPENDIX 2 - Relative Entropy

A Boltzmann machine (and its generalisations) operates by using an internal pe,
MRF to emulate an external PDF. Clearly it would be very useful to have a

measure of the quality of such an emulation, because this could then be used as
an objective function in an optimisation procedure designed to "train" the '"
Boltzmann machine.

" ~~-1 1- ,.".-'



Information theory gives us a rigorous measure of the extent to which
" an a posteriori PDF p(x) is more committal than an a priori PDF q(x)

G - dx p(x) log I p(x)/q(x) ] (A2.1)

This measure has been given various names such as: relative entropy,
cross entropy, directed divergence, expected weight of evidence. However
we shall use the term "relative entropy" because this conveys the (correct)
notion that q(x) is being used as a reference PDF.

There is much confusion about the origin and correct way of using G, so
we shall give a simple derivation of G from elementary principles. The type
of argument which we shall use is similar to that used by Shannon in deriving
the entropy expression in the context of communication theory (ie information
theory). We shall not assume anything about the role of p(x) and q(x) in
order to separate such considerations from the basic task of comparing the
PDFs.

We wish to define a measure of the similarity (or the difference) between
the two PDFs. The most useful type of measure would have an operational "'
definition; ie it would relate to some practical situation. The simplest
such situation which we can conceive of is one where states x are selected at
random with a frequency given by a PDF. Let us denote a sequence of such states
by the term "chain". Clearly each possible choice of PDF will give rise to its
own characteristic set of such chains, and each such set of chains could be used
to characterise the PDF which generated it. Thus we shall use the structure
of the set of chains which are generated by a PDF in order to provide an
operational definition of the properties of the PDF. An important caveat which -
must be mentioned before we develop the associated theory is that each state
in a chain must be chosen independently of all the others; only the generating
PDF is permitted to influence the choice of state. This restriction can be
removed at the cost of moving to a higher dimensional "super-state" space in
which each super-state represents a correlated chain of states, but where the
super-states themselves are statistically independent. We shall not consider
this more sophisticated analysis here other than to note that it provides the
means for analysing correlated sequences of states (such as time series). This

" method is closely related to "block entropy" or "Renyi entropy".

In order to facilitate the theoretical development we shall discretise the

state x; this is equivalent to dividing state space (phase space) into cells

which are labelled by an index. Thus state space is covered by a set of
non-overlapping cells, except possibly for a set of measure zero (with respect
to both p(x) and q(x)). Thus the PDFS are discretised in the following fashion

p(x) pt P2 . ...... Pm) (A2.2)

q(x) - {q1, q2 . . .. . .., q (A2.3) -.

- *-
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where

m

pj (A2.4) , ,_

j1

and

(A2. 5)

qj El

j=1I

If we generate a chain of N states using the Pk to define the state
probabilities, then the number of times state j occurs in the chain is
approximately Np . As N - co this approximation becomes more and more ..

accurate. There ore Npj is the average frequency of occurrence of state j in
chains generated by the Pk. A similar comment applies to the qk" These

frequencies completely specify the statistical properties of infinite length
chains of states, and so will be used to construct an operational measure of
the properties of PDFs. We shall call the chains which have the average
frequencies of occurrence of states "likely chains", and those with other
frequencies of occurrence of states "unlikely chains".

The probability of occurrence of a particular chain of N states
generated by the Pk is given by

P1 P2  Pm
_T(p,n) - (n )  (n ) . ... (n ) (A2.6) . . . .

where state j occurs n. times, and

j

n. EN (A2.7)

The number of ways in which such a chain can be generated is given by a
multinominal coefficient

N ~4
W(n) (A2.8)(ni n2, 3t .... n . ,

-' ~~N!. . .
(n )! (n2)' (n (A2.9)

1 2 ~ m b

The total probability of generating such a chain is given by the product . .

(p,_n)W(-n).
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In order to obtain an operational measure of the similarity of the set

of Pk and the set of qk we shall measure the probability that the qk could

generate "likely chains" of the set generated by the Pk, and vice versa. Thus

we imagine that a set of likely chains has been generated by one PDF, which is

then used as a standard against which to measure the chain generating perfor-

mance of another PDF. The probability that the qk can generate a Pk-likely

chain of length N is given by

P(_,N I y) - (3&,Np) W(Np) (A2.10)

This expression may be recast by using Stirling's approximation for log(z!)

(where z is large). Thus we arrive at

m

log( P(q,N I P) ) = -N Zp log( pj/qj) (A2.11)

j=1

We can recover the continuum analogue of equation (A2.11) by the following

replacements

"pj. - fdx p(x). (A2. 12)

j= 1

and

pj/qj - p(x)/q(x) (A2.13)

Thus

log( Pfq(x),N p(x)I ) = N G (A2. 14)

or equivalently

Ptq(x),N p(x)] exp(G)N (A2.15)

where the definition of G in equation (A2.1) has been used. Equation (A2. 5) gives

the probability that q(x) generates a p(x)-likely chain of length N. A correspond-

ing formula can be obtained where the roles of q(x) and p(x) are interchanged.

The G measure is used in relative entropy determination of an a posteriori

PDF p(x), when constriants in the form of expectation values are available, and a

prior estimate q(x) of the PDF is available. This procedure ensurs that the

p(x) which is chosen as the solution generates a set of likely chains which

maxtmise the probability (subject to the constraints) tha . members of a set can

be generated by q(x). This is an eminently reasonable criterion for selecting

a p(x), and it has -been shown to follow from a few elementary consistency
axioms (Shore and Johnson, 1980).
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The G measure has been used to determine the degree of similarity between
the "visible" part of a Boltzmann machine's PDF and the required PDF. The S. -N %.,
probability that the visible units' PDF generates a likely chain from the set
generated by the required PDF should be maximised. Thus in equation (A2.1)
the p(x) is the required PDF and the q(x) is the visible units' PDF; G should
then be maximised with respect to the qTx) which the Boltzmann machine can 70

generate. This prescription gives rise to the standard Boltzmann machine ..-'..,
training procedure (Hinton et al, 1984).

APPENDIX 3 - General Training Procedure M

The procedure whereby a Boltzmann machine is trained is just maximisation
* of an objective function G with respect to the neighbourhood interaction strengths

permitted by the machine's internal structure. The details of how this is
achieved for the canonical Boltzmannmachine have been given already (Hintonet al, 1984).
Here we give the generalisation of this method which enables us to train an I ' -W
arbitrary MRF structure to emulate a required PDF.

Let us group the visible (hidden) units together into a vector V (H), and

let us denote the required PDF by p(V). The PDF which is generated by the MRF
structure of the generalised Boltzmann machine will depend on both V and H, and
we shall denote it by q(V,H). It takes the form

"" r *. .. '. . v

,.. q(V,H) =- w. U (V,H) (A3.1I) --.\-"

where the equivalence between MRFs and Gibbs distribution has been used. The
• .Uj(V,H) form a set of permitted potentials, and the wj give the overall strength
." with which each U1 contributes to q(V,H). The Z factor normalises the PDF (it ' "

is the partition tunction). The canonical Boltzmann machine uses a special case

of equation (A3.1) where each element of V and H is a binary variable, and the
Uk(V,H) are each restricted to taking one of the five forms: Vi, H, V:Vj, H-Hj.

ViH j . The binary nature of the underlying variables makes the canonical
Boltzmann machine equivalent to an Ising spin model. The PDF over V alone is .- ""
obtained by integrating q(V,H) over all H. Thus -- _

q(V) -fdH q(V,H) (A3.2)

In order to maximise G (see equation AI.1) we need

aG = _7 :: "? :
. dV p(V) log (q(V) ) (A3.3)

Ow. f -"w

However
a) log (q(V) ) qM3"-"-""-
w.- q(V) c'.qZ " ';"Jw,..,

f(- _ dH -- q(V,H) (A3.4).1 :"" -"

-.-.- awi

q(V) .... w.
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The gradient with respect to the wi which is required in equation (A3.4) is

given by

- q(V,H) - q(VH) [ U. - Ui(VH) 1 (A3.5)

whereU i is the mean value of Ui(VH) when states (V,H) are selected with a ./ ,
frequency corresponding to q(V,HT.-On substituting equation (A3.5) into
equation (A3.4) we obtain --

loC1V ) H q(V,H) U i(V,H)

lo g ----

U. ~fdH qCQ4V) U (V,H)

= U. - U.(V) (A3. 6)

where U i(V) is the mean of U (V,H) when states Hare selected with a f requency
corresponding to q(HIV). Subs-ti-tuting the result in equation (A3.6) into

M equation (A3.3) gives

11" - i j ~~~dV p(V) [ -" .'"'

sV p(V) i) (A3.7)

Thus the gradient of the relative entropy with respect to one of the Gibbs
parameters depends on the difference between

U) The average value of the associated piece of the potential with the MRF
selecting states according to the full Gibbs distribution q(V,H), and

(ii) The average value of the associated piece of the potential with the MRF
selecting states according to the conditional Gibbs distribution q(HIV), and

with states V being selected according to the required PDF p(V).

If the components of V and H are binary variables, and the U(V,H) are
restricted to the five forms permitted for a canonical Boltzmann machine, then
the result in equation (A3.7) is the same as that already obtained for Boltzmann
machines"(Hinton et al, 1984).

Equation (A3.7) is fairly simple (in principle) to implement in a training
procedure. Because q(V,H) is a Gibbs distribution it defines a MRF structure,
so the Metropolis algorithm may be used to calculate the expectation values of any
sample function. Such calculations must be run for long enough to allow the
Metropolis algorithm to generate a sufficiently long chain of states that thelimit distribution (ie equilibrium) is reached. Simulated annealing may be used

to accelerate the approach to the limit distribution (Hinton et al, 1984). The first
term in equation (A3.7) may be estimated by this procedure because the relevant
PDF (V U) has the form of a Gibbs distribution. The second term in equation
(A3. -Ti not: so simple because it involves the PDF q(HIV)p(V). The q(HV) piece
has the form of a Gibbs distribution and so the Metropolis algorithm may be used to
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generate chains of states H for a given V. For instance the V may be the
members of a training set of states which are used to fix suitable V before %.
running the Metropolis algorithm to generate chains of states from q(HIV).
The required expectation values can be estimated if the Metropolis algorithm is
allowed to reach its limit distribution SEPARATELY for each training set vector
V, and if the results are then summed over the V (Hinton et al, 1984). This assumes
that the V are importance sampled from p(V); ifthey are not then the sum over
the V must be suitably weighted.

We may derive expressions for higher derivations of G by using the results
given above. As an example we may obtain the second derivative as

a3 U dV p(V) U.(v) .(v)
aw.aw. i. .- ..

-(dV p(V) =U.(V) ] (A3.8)

where the same notation has been used as in equation (A3.7). The Metropolis
algorithm is used to estimate the second derivative in an analogous fashion to
the first derivative.

An interesting situation arises if the P(V) itself is a Gibbs distribution;
then the Metropolis algorithm can be used to estimate ALL the required expect-
ation values. This is treated in Appendix 6.

APPENDIX 4 - Incorporating Prior Knowledge

The canonical Boltzmann machine structure is non-committal insofar as it
does not presume that there is any particular correlation structure in p(V).
Appendix 3 contains the training procedure for arbitrary p(V). In neither case

is the Boltzmann machine primed with information which will assist it in emulating
p(V). However the types of situation where prior knowledge is available are so
widespread that they deserve to be considered. C

Prior knowledge is usually partial and can consist of snippets of information

of various kinds such as

i) The observed data is "coupled to" a common source (hidden variable)

(ii) There are probabilistic constraints on the source and its couplings to the
observed data.

This type of prior knowledge can very conveniently be expressed in an MRF " ..

structure. The simplest example of this is when we express PART of the structure .-
of p(V) in terms of a Gibbs distribution. Specifically if we may express our
prior knowledge about p(V) by the following replacement

p(V) -- b p1 (V,H') p2(V,H',H'') (A4.1)

where pl(V,H') has a known graph/interaction structure, and where p2 (V,H',H'') is
a residuaT"and unknown) PDF. The canonical Boltzmann machine can be modified into
a hybrid which incorporates

(i) The graph/interaction structure of p (V,H'), and
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(ii) A "graft" of canonical Boltzmann machine graph nodes which serve to
emulate the effect of the unknown p2 (V,H',H'').

Note that in the special case where PI(V,H') alone is a perfect model for
generating p(V) then the graft is not necessary. A hybrid is depicted in Figure
5. g -P_

APPENDIX 5 - Random Telegraph Signals .

In order to investigate the ability of a Boltzmann machine, a Gibbs machine
or a hybrid Gibbs machine to capture the correlation structure of the signals
in a training set, it is convenient to define a standard training set. In one
dimension the simplest non-trivial signal class is the random telegraph signal
(RTS). Such a signal is binary valued and its statistical properties are
completely specified by the transition probability p, which is the probability
that the value (0 or 1) that the signal takes at time tn, 1 is different from
that which it takes at time tn. The ID RTS is thus a Markov chain with a
stochastic matrix given by

1-p p -.:::::'
s = (A5.1l)

p 1-p

We have introduced the RTS because it is the simplest signal structure
which has a non-zero correlation length L. From elementary considerations L
may be estimated by using . .

O0/p 0.0 < p< 0.5
L =(A5.2)

(1(-p)) 0.5 5 p < 1.0

The first (second) case in equation (A5.2) corresponds to an RTS which is
(anti)correlated in value at adjacent times. p=0.5 will give rise to a pure .
noise signal, ie no correlations whatsoever.

We may formulate the ID RTS as a Gibbs distribution (see Appendix 1).
The probability of a particular chain of length N occurring is

PN(Xl ..... ,xN) T q(x2 'x q(xx .... q(xx 1  (A5.3)

wh .-re

q(xi,x) exp( -U(xi,x.)) (A5.4)

and

I2
U(x.,x.) log(l-p) + log(p/(1-p)) (x.-x.)2  (A5.5)

and xk is the state of the RTS at time k. The factor 1/2 in equation (A5.3) arises
because the limit distribution of the Markov chain occupies the 0 and I states
with equal probability. From equations (A5.3), (A5.4) and (A5.5) we see that the
probability of occurrence of an arbitrary length chain is made up of a product
of terms each of which has the form of a Gibbs distribution. Some particular
points to note are:
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(i) The form of the Gibbs distribution is symmetric with respect to reversal

of the time variable. This is because the Gibbs distribution which we have

constructed does not have the Markov chain's transient behaviour (which is

causal) included in its specification.

(ii) The form of the Gibbs distribution is translation invariant. This follows 8d
from the homeogeneity of the definition of the ID RTS.

(iii)The properties of the RTS reside in a "potential" U(xk,xk+1) which exists
BETWEEN adjacent times t=k and t=k+I. ,

Remark (iii) above may be used in order to generalise the ID RTS to a 2D
RTS (and higher dimensions if requ'red). Thus we may create a 2D graph with

nodes placed on a square lattice. We shall define the 2D neighbourhood of a
node to be the 8 nearest neighbours (N, S, E, W, NE, SE, SW and NW) on the
lattice, see Figure 6. We shall define a Gibbs distribution by analogy with
the ID RTS above. Thus each pair of neighbouring nodes will have an associated
potential which takes the form given in equation (A5.5), and which gives a
contribution to the Gibbs distribution as in equation (A5.4). The Gibbs
distribution is formed by taking the product of these separate contributions for -"''"

all distinct pairs of neigbbouring nodes. This definition is "isotropic"
insofar as it has the same symmetry as that of a square lattice.

We may use the Metropolis algorithm to generate realisations of the 2D RTS

from its Gibbs distribution (see Appendix 1). These may be used to generate sets
of correlated signals for training purposes. Some examples of 32 by 32 2D RTSs
are shown in Figure 7 for various values of p in equation (A5.5).

The potential defined in equation (A5.5) gives rise to a MRF structure which

is a special case of the autobinomially distributed MRF of Cross and Jain (1983).
Our RTS model corresponds to their second order binary model with suitably chosen
values for the model parameters.

A more general 2D RTS can be constructed by removing the isotropy condition,
but retaining translation invariance and mirror symmetry. This permits four
independent types of potential to appear in the Gibbs distribution, one for each
possible direction in the square lattice. Let us denote these by pl, p2, p3 and

P4 (corresponding to E/W, N/S, NE/SW and SW/NE directions respectively). Again
the Gibbs distribution is formed by taking the product of contributions from all
distinct pairs of neighbouring nodes. However for this more general case each
potential must be selected according to which of the four directions the

corresponding node pair defines.

APPENDIX 6 - Training Procedure for Gibbs Distributions

This appendix assumes the results of Appendix 3. If the required PDF
p(V) itself is derived from a Gibbs distribution, then it must have the form ..-.

p(V) f•dH' p(V,H') (A6-1)
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J .%

where

p(V,H') 1, exp Iw'jU j (V,H ) (A6.2)

_ _ e x p j = 1

which should be compared with equation (A3.). The H' are a new set of hidden
variables which contribute to the form of p(V) in an analogous fashion to the
affect of the H of q(V) in Appendix 3. Equation (A3.7) may be written out in

full as

I dV dH q(V,H) U(V,H) dV dH dH' q(HIV) p(V,H')U(V,H)owd C A6.3)

There are two Gibbs distributions which contribute to the gradient

(i) q(V,H), and
(ii) q H * p(V,H_,

Distribution (i) was considered in Appendix 3, but distribution (ii) is
new (insofar as it is now a Gibbs distribution). There are three types of
variables to consider: H, V and H'. However the NCPDFs can be recovered from

the Gibbs distributions, and the Metropolis algorithm ALONE can be used to estimate
both the integrals in equation (A6.3).

Of course there is no need to use a Boltzmann machine to capture the required
correlation structure (ie p(V)) if one has an explicit representation of p(V) in
terms of a Gibbs distribution. However this formulation is very useful when the
"training sets" of interest can be approximated by a Gibbs distributions, for
then the behaviour of Boltzmann machines can be investigated much more conveniently.
Furthermore the fact that the entire training scheme can be achieved by using a
Metropolis algorithm alone means that the limit distribution (equilibrium) of
the conditional PDF q(H_ V) does not have to be reached separately for each V

(see the discussion following equation A3.7)).
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TABLE 1

Table of dG/dp for various pRT and p corresponding to Figure 7.

I ~RTS -TS

p 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.2 0.0 0.3 0.8 2.4 2.7 3.7 4.2

0.3 0.0 0.0 0.7 2.1 2.4 2.7 3.1

0.4 -0.5 -0.5 0.1 1.3 1.6 2.0 2.3

0.5 -1.8 -1.8 -1.1 0.0 0.2 0.5 0.9

0.6 -2.2 -2.1 -1.7 -0.3 0.0 0.3 0.6

0.7 -2.8 -2.2 -2.1 -0.6 -0.3 0.0 0.4 .

p0.8 -4.2 -4.2 -3.5 -1.3 -0.9 -0.5 0.0
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TABLE 2(a) .- .

* Table of grad(G(p)) for various P2RTS and p corresponding to Figure 8(a)

?= (0.7,0.3,0.7,0.3) RB=(0.6,0.4,0.6,0.4) p = (0.5,0.5,0.5,0.5)

z= (0.4,0.6,0.4,0.6) =(0.3,0,7,0.3,0.7)

grad(G(p))

.RRTS P -P P4 P= P -RE R

(0.0,+0.1, (+0.2,-0.3, (+0.6,-0.6, (+1.0,-1.0, (+1.6,-1.6,
-RA -0.1, 0.0) +0.5,-0.2) +1.1,-0.2) +1.4,-0.6) +1.7,-1.2)

pB (-0.3,+0.4, (-0.1, 0.0, (+0.3,-0.3, (+0.7,-0.7, (+1.1,-1.2,
B-0.7,+0.1) -0.1, 0.0) +0.5,-0.2) +0.7,-0.6) +0.9,-1.4)

p(-0.8,+0.8, (-0.4,+0.4, (-0.1,+0.1, (+0.3,-0.3, (+0.7,-0.7,
-1 .3,+0.4) -0.6,+0.2) 0.0, 0.0) +0.2,-0.4) +0.3,-i1.2)

ED (-1.2,+1.2, (-0.8,+0.7, (-0.4,+0.4, (-0.1,+0.1, (+0.2,-0.3,
-1.6,+0.9) -0.9,+0.7) -0.3,+0.5) 0.0,+0.1) +0.1,-0.6)

PE (-1.4,+1.5, (-1.0,+0.9, (-0.7,+0.6, (-0.4,+0.4, (+0.1,0.0,
-1.7,+1.6) -1.0,+1.4) -0.4,+1.1) -0.1,+0.7) -0.1, 0.0)

TABLE 2(b)

Table of grad(G(p)) for various .ERT S and p corresponding to Figure 8(b).

LA=(0.5,0.5,0.3,0.7) pB (0.4,0.6,0.4,0.6) =(03,0.7,0.5,0.5)

grad(G(p))

RRTS p 4P B .

LA .0, 0J.0, (0.'4,V0.5, (+1.1,,1.2.,
EA-0.2,+0.2) -1.0,+0.5) -1.9,+0.3)

_(-0.3,+0.3, (0.0, 0.0, (+0.6,-0.6,
+0.9,-0.6) +0.1,-0.1) -0.9,-0.2)

(-1.0,+1.0, (-0.7,+0.79 (-0.2,+0.1, .
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TABLE 2(c)

Table of grad(G(p)) for various LTS and p corresponding to Figure 8(c).

PA = (0.7,0.7,0.3,0.3) =(0.6,0.6,0.4,0.4) p (0.5,0.5,0.5,0.5)

PD (0.4,0.4,0.6,0.6) pE (0.3,0.3,0.7,0.7)

grad (G(p))

LATS L LA pL p 1bIa-p B -L-E r*

0.,-.1 (+0.4,+0.3, (+1.5,+1.5, (+1.9,+1.9, (+2.0,+2.2,
+0.1, 0.0) -0.3,--0.4) -1.4,-1.5) -1.9,-2.0) -2.8,-2.8)

RB (-0.6,-0.6, (-0.1,-0.1, (+1.0,+1.0, (+1.4,+1.4, (+1.5,+1.6,

(-.,-., (-1.3,--1.3, (-0.2,-0.1, (+0.1,+0.2, (+0.1,+0.3,
+.8,+1.8) +1.3,+1.2) +0.i,+0.1) -0.3,-0.3) -0.9,-0.8)

(-.,-., (-1.4,-1.5, (-0.3,-0.3, (-0.1, 0.0, (-0.1, 0.0,
RD+2.2,+2.2) +1.6,+1.5) +0.5,+0.4) +0.1, 0.0) -0.5,-0.-

E (-2.1,-2.0, (-1.5,-1.3, (-0.2,-0.3, (-0.2,+0.2, (-0.1,+0.1,
+2.8,+2.8) +2.1,+2.1) +0.9,+0.9) +0.6,+0.6) 0.0+0.1)

TABLE 3(a)

Table of grad(G(p)) for various LRTS and p corresponding to Figure 10(a).

PA = (0.7,0.3,0.7,0.3) -B (0.6,0.4,0.6,0.4) p (0.5,0.5,0.5,0.5)

PD (0.4,0.6,0.4,0.6) PE= (0.3,0.7,0.3,0.7)

CRAD(G(p))

LPRTS p LA R LQ R LL 0 D-P

(0.0, 0.0, (+0.1,-0.1, (+0.3,-0.3, (+0.3,-0.3, (+0.2,-0.2,
+0.1, 0.0) +0.3,+0.1) +0.5,-0.1) +0.3,-0.4) +0.1,-0.4)

LB (0.1,+0.1, (-0.1,+0.1, (+0.2,-0.2, (+0.3,-0.3, (+0.3,-0.3,
-0.4,+0.2) -0.2,+0.1) +0.2, 0.0) +0.2,-0.4) +0.1,-0.6)

*(-0.2,+0.2, (-0.2,+0.2, (0.0, 0.0, (+0.2,-0.2, (+0.3,-0.3,
-0.5,+0.2) -0.4,+0.1) 0.0, 0.0) +0.1,-0.3) +0.1,-0.6)

L-D (-0.3,+0.2, (-0.3,+0.3, (-0.2,+0.1, (0.0, 0.0, (+0.1,-0.1,
-0.6,+0.2) -0.4,+0.2) -0.1,+0.2) 0.0,-ol1) +0.1,-0.3)

(02+., (-0.3,+0.3, (-0.2,+0.3, (-0.1,+0.2, (0.0, 0.0
-0.4,+0.3) -0.4,+0.3) -0.1,+0.5) 0.0,+0.3) 0.0,+0.1)
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TABLE 3(b)

Table of grad(G(p)) for various TS and p corresponding to Figure 10(b). ?'-

PA (0.5,0.5,0.3,0.7) =(0.4,0.6,0.4,0.6) =(0.3,0.7,0.5,0.5).

grad(G(p))

ERTS p EA -P-B -

2A0.0, 0.0, (+0.3,-0.3, (+0.6,-0.6,

LA+0.2,-0.2) -0.5,+0.2) -0.7,-0.1)

k2B (0.2,+0.2, (0.0, 0.0, (+04,-0.5,
+0.8,-0.6) +0.1,-OA1) -0.4,-0.3)

PC(-0.4,+0.4, (-0.4,+0.3, (-0.2,+0.1,
+1.3,-0.7) +0.8, 0.0) +0.2,+0.2) -

TABLE 3(c)

Table of grad(G(p)) for various TS and p corresponding to Figure 10(c).

P= (0.7,0.7,0.3,0.3) RB=(.,.,0404 (0.5,0.5,0.5,0.5)

= (0.4,0.4,0.6,0.6) PE (0.3,0.3,0.7,0.7)........

grad(G(p))

RERTS -PA -E RB P p

(02+., (+0.4,+0.3, (+0.B,+0.7, (+0.2,+0.3, (0.0,+0.2)
-0.4, 0.0) -0.5,-0.3) -0.8,-0.7) -0.4,-0.4) -0.4,-0.4)

(-0.],-0.2, (0.0,-0.0, (-0.5,-0.5, (+0.2,+0.3, (0 .0+.2,
-0.1,+0.2) -0.1, 0.0) -0.5,-0.5) -0.3,-0.3) -0.4,-0.5)

RD (-0.2,-0.2, (-0.9,-0.9, (-0.1,-0.1, (0.0,+0.1, (-0.),+0.1,
+0.1,+0.2) +0.7,+0.8) +0.1,+0.2) -0.0,-0.0) -0.4,-0.5) T .

ED (-0.3,-0.3, (-0.8,-0.8, (-0.1,-0.2, (0.0,+0.1, (-0.2,+0.T,
+0.1,+0.3) +0.8,+0.9) +0.2,+0.2) .0,.05) -0.3,-0.4)
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FIGURE CAPTIONS

1. General MRF Structure

2. Composite MRF Structure

3. Boltzmann Machine Structure

- 4. An example of a Gibbs Machine Structure ,....:

S5. Hybrid Gibbs Machine Structure

6. 8-fold neighbourhood square lattice used for generating 2D RTSs

7. Homogeneous isotropic 2D RTSs

8(a), 8(b) and 8(c).

Homogeneous mirror-symmetric 2D RTSs

9. 8-fold neighbourhood square lattice linked unidirectionally to a
0-fold neighbourhood lattice used for generating 2D speckled RTSs

10(a), 10(b) and 10(c).

Homogeneous mirror-symmetric 2D RTSs with speckle noise

1.
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